Neutronic Challenges in SCWR Core Design

T. K. Kim
Argonne National Laboratory
Key Differences between SCWR and LWR

- **Coolant Density**
 - Severe coolant density change axially
 - Coolant density is very sensitive to coolant temperature

- **Operating Condition**
 - High pressure and high temperature

- **Cladding Material**
 - High temperature resistant material
 - Higher neutron absorption
A Sample System Code for SCWR Core Design

- WIMS8 used for lattice calculations
 - 172-group library (based on JEF2.2) employed for self-shielding calculations

- Zonal cross sections are functionalized by state parameters,
 \[\sigma(r_m, T_m, T_f, SB) = \sigma(r_m^0, T_m^0, T_f^0, SB^0) + \frac{\partial\sigma}{\partial r_m} \Delta r_m + \frac{\partial\sigma}{\partial T_m} \Delta T_m + \frac{\partial\sigma}{\partial T_f} \Delta T_f + \frac{\partial\sigma}{\partial SB} \Delta SB \]

- SOLTRAN used for core calculations
 - Interface current nodal formulation of simplified P_2 equation in multi-dimensional hexagonal geometry
 - Multi-group, 3-Dimensional geometry
 - Single-phase heat balance equation was adopted for T/H condition update,
 \[T_{\text{out},k}^{i} = T_{\text{in},k}^{i} + \frac{1}{W \times c_p} \int q_{\text{in},k}^{i}(z)dz \]
Algorithm of WIMS8/SOLTRAN System

Read Input for XS calculations
Write XS (ISOTXS format) files
Read XS (ISOTXS format) files
Initialize T/H properties
Update node-wise XS
Solve diffusion (or SP2) equation
Flux converged?
yes
Update T/H properties
T/H converged?
yes
Edit solution
Loop of T/H update
Loop of outer iteration
Lattice Calculation (WIMS8)

Core Calculation (SOLTRAN)
Convergence Problem

- Eigenvalue of typical PWR converges easily
- Eigenvalue of SCWR oscillates during calculation of T/H condition update
 - T/H properties are very sensitive to coolant temperature
 - Oscillatory behavior is dependent on coolant mass flow rate, core power, inlet temperature, etc
Comparison between SCWR and PWR

Numbers in legends denotes coolant mass flow rate in kg/sec/MWe

Argonne National Laboratory
Sensitive to Coolant Mass Flow Rate

Numbers in legends denotes coolant mass flow rate in kg/sec/MWe
Pseudo means pseudo-critical temperature at 25MPa

Argonne National Laboratory
Coolant Pressure Effect

Numbers in legends denote coolant pressure in MPa
Effect of Active Core Height

Numbers in legends denotes active core height in cm
Whole Core Calculation

- Power and coolant density are very sensitive to the coolant temperature.
- Power fluctuation is due to the non-uniform radial power shape.
- Neutronic instability may happen during depletion, moving of control rods, perturbation of coolant mass flow, etc.
Challenges

- **Accuracy of codes**
 - Lattice codes for cross section generation
 - Intermediate neutron spectrum (need benchmark)
 - Need higher actinide cross sections for burner design
- **Core calculation code**
 - Multi-group calculation is necessary
 - Convergence problem due to high sensitive T/H properties

- **Challenges**
 - Axial power shape control
 - Water-rod, solid-rod, axial enrichment zoning, etc
 - Radial power shape control (or coolant flow rate control)
 - Reactivity coefficient control
 - Pan-cake type core, Zr-H layers, Thorium fuel, etc
 - Neutronics and T/H coupling calculation for instability analysis
- **Advances core concepts**
 - Burner, Breeder, Multi-purpose reactors, etc
Multi-purposed Mixed Spectrum SCWR

- Inner core (fast spectrum)
 - ~0.7 g/cm³

- Outer core (thermal spectrum)
 - ~0.7 g/cm³
 - ~0.1 g/cm³
 - ~0.4 g/cm³

- Thermal shield

- Coolant inlet
- Coolant outlet
- Control rod
- Core plate
Reactivity Control with Thorium-base Fuel

![Graph showing void coefficient vs. burnup for different fuels](image)

- SCR with 9.98 fissile
- (Th+Pu)O₂ with 9.98 fissile
- (Th+Pu)O₂ with 11.12 fissile